Using Lex or Flex

Prof. James L. Frankel
Harvard University

Version of 11:54 AM 14-Sep-2023
Copyright © 2023, 2022, 2016, 2015 James L. Frankel. All rights reserved.

Lex Regular Expressions (1 of 4)

e Special characters are: — + (plus sign)
—\ (back slash) — ? (question mark)
— " (double quote) — { (open brace)
— . (period) — } (close brace)
— A (caret or up arrow) — | (vertical bar)
— $ (dollar sign) — / (slash)
— [(open bracket) — - (dash or hyphen)
—] (close bracket) — ((open parenthesis)

— * (asterisk) —) (close parenthesis)

Lex Regular Expressions (2 of 4)

C matc

\c matc
"s" matc

matc
A matc
S matc

[s] matc
[As] matc

nes the single non-operator char ¢
nes the character ¢

nes the string s

nes any character except newline
nes beginning of line

nes end of line

nes any one characterin s

NesS any one character notins

r*
r+
r?

matc
matc
matc

rm, nj
r,r, matc
r,|r, matc

(r)

matc

r,/r, matc
{name} matches the regex defined by name

Lex Regular Expressions (3 of 4)

nes zero or more strings matching r

nes one or more strings matching r

hes zero or one strings matching r

matches between m and n occurrences of r
nes r, followed by r,

nes eitherr, orr,

nes r

nes r, when followed by r,

Lex Regular Expressions (4 of 4)

Within square brackets, referred to as a character class, all operators are
ignored except for backslash, hyphen (dash), and caret

Within a character class, backslash will introduce an escape code
Within a character class, ranges of characters are allowed by using hyphen
— a-zA-Z

Within a character class, if caret is the first character in the class, it
indicates matching to any character that is not listed in the square brackets

— In any other position in the class, caret is a normal character in the character
class

File Format

e Extension is .lex

 Content consists of three sections, as follows:

<definitions>
%%

<rules>

%%

<user functions>

Definitions Section

* Anything in the <definitions> sections that is delimited by a

line with "%{" to a line with "%}" is copied directly to the
output C file

— This allows user functions to be declared here so that they are
declared prior to being called from a rule

* Each line in the <definitions> section (other than those

between "%{" and "%}") has the format:
<name> <regex>

Rules Section (1 of 2)

* The rules section consists of a sequence of rules

— Each rule has a regular expression pattern that starts in column one
followed by whitespace (space, tab, or newline) and optionally followed by
either a C statement or a sequence of C statements enclosed in braces

— If there is no C statement, then the input is consumed, but no action is
taken with that input and the lexer will look for a new token

* When used in a rule, a name enclosed within braces has its
associated <regex> substituted

— This does not happen when the name within braces is quoted

* There is a default rule which matches any character and copies it to
the output

Rules Section (2 of 2)

 The C code should return the kind of token (referred to as the
token type)

* An optional value of the token may be placed in yylval

* By default, the type of yylval is int

— The type of yylval can be changed by using a #define with the
preprocessor symbol YYSTYPE

— If present, this #define should appear at the beginning of the %{ part
of the definitions section

Rules Details

* |f two or more regular expression patterns match a string from
the input, the rule which matches the longest input string is

chosen

* |f two or more regular expression patterns match a string from
the input and the input strings are of the same length, then the
first rule in the <rules> section is chosen

e Remember to include a rule for an action on whitespace

Lex Invocation and Return Value

e Call yylex() to invoke the generated lexer

e Lex scans for tokens from yyin
— yyin defaults to stdin
* Lex continues to scan for tokens until it executes a return

statement in a matching rule in the Rules Section or until it
reaches end-of-file

— On end-of-file, flex returns O
— Note: this end-of-file behavior is specific to flex

User Functions Section

* Any support functions to be used in the rules section should
appear in the User Functions section

e These functions should be declared in the declaration section

Compiling a Lex file

 |ex lexer-standalone.lex or
flex lexer-standalone.lex

e gcc lex.yy.c -c
— -C means to create an object file, but do not link
— object file will have the extension ".0"

e gcc -pedantic -Wall lex.yy.o lexer.c -Ifl -o lexer
— -pedantic means to issue all warnings demanded by Standard C
— -Wall means to issue many warnings that some users consider questionable

— -Ifl means to link with the flex libraries (on some systems, -Il may be needed to
link with lex libraries)

— -0 is used to specify the name of the executable file

Files produced

* |lex reads from stdin or from a specified file and produces a
exer named lex.yy.c

* |lex.yy.cis source code in the C Programming Language that
needs to be compiled

* The user must specify a main program
— In our example, the main program is in the file named lexer.c

— This is where yylex is called
— yylval must be defined in this file

Input and Output

* By default, input to lex comes from stdin and output goes to stdout

* The input and output files may be changed
— FILE *yyin is the input file
— FILE *yyout is the output file

* An optional function “int yywrap(void)” is called when input is
exhausted
— |t should return 1 if lexical analysis is done

— |t should return O if more actions are required

* This allows yyin to be set to a subsequent file and then lex processing to continue
with that file

Special Symbols

yytext the matched string as a null terminated string
vyleng the length of the matched string

vylex() the generated lexer function that returns an int
vylval the value of the token matched

yyin the input file

yyout the output file

yywrap() function called on end of input

	Slide 1: Using Lex or Flex
	Slide 2: Lex Regular Expressions (1 of 4)
	Slide 3: Lex Regular Expressions (2 of 4)
	Slide 4: Lex Regular Expressions (3 of 4)
	Slide 5: Lex Regular Expressions (4 of 4)
	Slide 6: File Format
	Slide 7: Definitions Section
	Slide 8: Rules Section (1 of 2)
	Slide 9: Rules Section (2 of 2)
	Slide 10: Rules Details
	Slide 11: Lex Invocation and Return Value
	Slide 12: User Functions Section
	Slide 13: Compiling a Lex file
	Slide 14: Files produced
	Slide 15: Input and Output
	Slide 16: Special Symbols

