
Using Lex or Flex

Prof. James L. Frankel
Harvard University

Version of 11:54 AM 14-Sep-2023
Copyright © 2023, 2022, 2016, 2015 James L. Frankel. All rights reserved.

Lex Regular Expressions (1 of 4)

• Special characters are:

– \ (back slash)

– " (double quote)

– . (period)

– ^ (caret or up arrow)

– $ (dollar sign)

– [(open bracket)

–] (close bracket)

– * (asterisk)

– + (plus sign)

– ? (question mark)

– { (open brace)

– } (close brace)

– | (vertical bar)

– / (slash)

– - (dash or hyphen)

– ((open parenthesis)

–) (close parenthesis)

2

Lex Regular Expressions (2 of 4)

• c matches the single non-operator char c

• \c matches the character c

• "s" matches the string s

• . matches any character except newline

• ^ matches beginning of line

• $ matches end of line

• [s] matches any one character in s

• [^s] matches any one character not in s

3

Lex Regular Expressions (3 of 4)

• r* matches zero or more strings matching r
• r+ matches one or more strings matching r
• r? matches zero or one strings matching r
• r{m, n} matches between m and n occurrences of r
• r1r2 matches r1 followed by r2

• r1|r2 matches either r1 or r2

• (r) matches r
• r1/r2 matches r1 when followed by r2

• {name} matches the regex defined by name

4

Lex Regular Expressions (4 of 4)

• Within square brackets, referred to as a character class, all operators are
ignored except for backslash, hyphen (dash), and caret

• Within a character class, backslash will introduce an escape code

• Within a character class, ranges of characters are allowed by using hyphen
– a-zA-Z

• Within a character class, if caret is the first character in the class, it
indicates matching to any character that is not listed in the square brackets
– In any other position in the class, caret is a normal character in the character

class

5

File Format

• Extension is .lex

• Content consists of three sections, as follows:

<definitions>
%%
<rules>
%%
<user functions>

6

Definitions Section

• Anything in the <definitions> sections that is delimited by a
line with "%{" to a line with "%}" is copied directly to the
output C file

– This allows user functions to be declared here so that they are
declared prior to being called from a rule

• Each line in the <definitions> section (other than those
between "%{" and "%}") has the format:
<name> <regex>

7

Rules Section (1 of 2)

• The rules section consists of a sequence of rules
– Each rule has a regular expression pattern that starts in column one

followed by whitespace (space, tab, or newline) and optionally followed by
either a C statement or a sequence of C statements enclosed in braces

– If there is no C statement, then the input is consumed, but no action is
taken with that input and the lexer will look for a new token

• When used in a rule, a name enclosed within braces has its
associated <regex> substituted
– This does not happen when the name within braces is quoted

• There is a default rule which matches any character and copies it to
the output

8

Rules Section (2 of 2)

• The C code should return the kind of token (referred to as the
token type)

• An optional value of the token may be placed in yylval

• By default, the type of yylval is int

– The type of yylval can be changed by using a #define with the
preprocessor symbol YYSTYPE

– If present, this #define should appear at the beginning of the %{ part
of the definitions section

9

Rules Details

• If two or more regular expression patterns match a string from
the input, the rule which matches the longest input string is
chosen

• If two or more regular expression patterns match a string from
the input and the input strings are of the same length, then the
first rule in the <rules> section is chosen

• Remember to include a rule for an action on whitespace

10

Lex Invocation and Return Value

• Call yylex() to invoke the generated lexer

• Lex scans for tokens from yyin

– yyin defaults to stdin

• Lex continues to scan for tokens until it executes a return
statement in a matching rule in the Rules Section or until it
reaches end-of-file

– On end-of-file, flex returns 0

– Note: this end-of-file behavior is specific to flex

11

User Functions Section

• Any support functions to be used in the rules section should
appear in the User Functions section

• These functions should be declared in the declaration section

12

Compiling a Lex file

• lex lexer-standalone.lex or
flex lexer-standalone.lex

• gcc lex.yy.c -c
– -c means to create an object file, but do not link

– object file will have the extension ".o"

• gcc -pedantic -Wall lex.yy.o lexer.c -lfl -o lexer
– -pedantic means to issue all warnings demanded by Standard C

– -Wall means to issue many warnings that some users consider questionable

– -lfl means to link with the flex libraries (on some systems, -ll may be needed to
link with lex libraries)

– -o is used to specify the name of the executable file

13

Files produced

• lex reads from stdin or from a specified file and produces a
lexer named lex.yy.c

• lex.yy.c is source code in the C Programming Language that
needs to be compiled

• The user must specify a main program

– In our example, the main program is in the file named lexer.c

– This is where yylex is called

– yylval must be defined in this file

14

Input and Output

• By default, input to lex comes from stdin and output goes to stdout

• The input and output files may be changed
– FILE *yyin is the input file

– FILE *yyout is the output file

• An optional function “int yywrap(void)” is called when input is
exhausted
– It should return 1 if lexical analysis is done

– It should return 0 if more actions are required
• This allows yyin to be set to a subsequent file and then lex processing to continue

with that file

15

Special Symbols

• yytext the matched string as a null terminated string

• yyleng the length of the matched string

• yylex() the generated lexer function that returns an int

• yylval the value of the token matched

• yyin the input file

• yyout the output file

• yywrap() function called on end of input

16

	Slide 1: Using Lex or Flex
	Slide 2: Lex Regular Expressions (1 of 4)
	Slide 3: Lex Regular Expressions (2 of 4)
	Slide 4: Lex Regular Expressions (3 of 4)
	Slide 5: Lex Regular Expressions (4 of 4)
	Slide 6: File Format
	Slide 7: Definitions Section
	Slide 8: Rules Section (1 of 2)
	Slide 9: Rules Section (2 of 2)
	Slide 10: Rules Details
	Slide 11: Lex Invocation and Return Value
	Slide 12: User Functions Section
	Slide 13: Compiling a Lex file
	Slide 14: Files produced
	Slide 15: Input and Output
	Slide 16: Special Symbols

